Ranking Cases with Classification Rules

نویسندگان

  • Jianping Zhang
  • Jerzy W. Bala
  • Ali Hadjarian
  • Brent Han
چکیده

Many real-world machine learning applications require a ranking of cases, in addition to their classi cation. While classi cation rules are not a good representation for ranking, the human comprehensibility aspect of rules makes them an attractive option for many ranking problems where such model transparency is desired. There have been numerous studies on ranking with decision trees, but not many on ranking with decision rules. Although rules are similar to decision trees in many respects, there are important di erences between them when used for ranking. In this chapter, we propose a framework for ranking with rules. The framework extends and substantially improves on the reported methods for ranking with decision trees. It introduces three types of rulebased ranking methods: post analysis of rules, hybrid methods, and multiple rule set analysis. We also study the impact of rule learning bias on the ranking performance. While traditional measures used for ranking performance evaluation tend to focus on the entire rank ordered list, the aim of many ranking applications is to optimize the performance on only a small portion of the top ranked cases. Accordingly, we propose a simple method for measuring the performance of a classi cation or ranking algorithm that focuses on these top ranked cases. Empirical studies have been conducted to evaluate some of the proposed methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning to Rank Cases with Classification Rules

An advantage of rule induction over other machine learning algorithms is the comprehensibility of the models, a requirement for many data mining applications. However, many real life machine learning applications involve the ranking of cases and classification rules are not a good representation for this. There have been numerous studies to incorporate ranking capability into decision trees, bu...

متن کامل

A new approach based on data envelopment analysis with double frontiers for ranking the discovered rules from data mining

Data envelopment analysis (DEA) is a relatively new data oriented approach to evaluate performance of a set of peer entities called decision-making units (DMUs) that convert multiple inputs into multiple outputs. Within a relative limited period, DEA has been converted into a strong quantitative and analytical tool to measure and evaluate performance. In an article written by Toloo et al. (2009...

متن کامل

On Mining Fuzzy Classification Rules for Imbalanced Data

Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...

متن کامل

On Mining Fuzzy Classification Rules for Imbalanced Data

Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...

متن کامل

Mining Association Rules for Label Ranking

Recently, a number of learning algorithms have been adapted for label ranking, including instance-based and tree-based methods. In this paper, we continue this line of work by proposing an adaptation of association rules for label ranking based on the APRIORI algorithm. Given that the original APRIORI algorithm does not aim to obtain predictive models, two changes were needed for this achieveme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010